Por qué nos eligen nuestros clientes :
- Fabricante-Control Directo
- Apoyo técnico
- Calidad constante
- Plazos de entrega fiables
| Material | Densidad (g/cm³) | Resistencia a la tracción (MPa) | Specific Strength* | Tensile Modulus (GPa) | Data Source | |
| Carbon Fiber Composite (Epoxy) | 1.5–1.8 | 600–1500 | 400–1000 | 70–230 | ASM / NASA | |
| Aluminio 6061-T6 | 2.7 | ~310 | ~115 | 69 | Aluminum Association | |
| Structural Steel (A36) | 7.85 | 400-550 | ~55 | 200 | World Steel | |
| E-Glass Composite | 1.9-2.1 | 500–900 | ~260–430 | 20–30 | Owens Corning | |
In practical design, carbon fiber strain is commonly interpreted as strain-to-failure, while carbon fiber modulus defines stiffness along the fiber direction.
Carbon fiber tensile strength indicates maximum load capacity before failure but must be evaluated together with fiber orientation and laminate design.
| Material | Comportamiento ante la fatiga | Resistencia a la corrosión | Reference |
| Carbon Fiber Composite | Minimal strength loss after 10⁶ cycles | Excelente | ASTM D3479 / FAA |
| Aluminum Alloys | Progressive fatigue cracking | Good | ASM |
| Acero estructural | High fatigue sensitivity | Poor–Fair | World Steel |
| Fiberglass Composite | Good fatigue resistance | Excelente | CompositesWorld |
Actual performance varies depending on alloy grade, fiber architecture, resin system, and manufacturing process. The data above represents typical engineering reference ranges used for material comparison.
Carbon fiber material is supplied in multiple product forms to meet different structural, machining, and assembly requirements.
Carbon fiber tubes are hollow structural forms designed to deliver high bending stiffness and torsional strength at low weight.
Carbon fiber sheets and plates are flat laminate materials supplied for machining, cutting, and secondary fabrication.
Carbon fiber can be engineered into custom structural parts and profiles through molding, layup, and machining processes.
Carbon fiber rods are solid composite profiles offering high axial stiffness and dimensional stability.
The selection of carbon fiber product form depends on load conditions, geometry, manufacturing method, and cost considerations.
While carbon fiber offers exceptional performance advantages, its effective use requires proper engineering design and an understanding of its material limitations.
Anisotropy & Load Direction
Carbon fiber composites are anisotropic materials, meaning their mechanical properties vary with fiber orientation.
Maximum strength and stiffness are achieved along the fiber direction, making laminate design and load path definition critical in structural applications.
Failure Behavior & Impact Sensitivity
Unlike metals, carbon fiber does not plastically deform before failure.
Overloading or impact can lead to sudden fracture or internal delamination, which may not be visible on the surface but can significantly reduce structural integrity.
Manufacturing & Cost Considerations
Carbon fiber components require specialized manufacturing processes, tooling, and quality control.
Material cost, processing complexity, and production volume must be evaluated early to balance performance benefits with economic feasibility.
Environmental & Thermal Limits
The performance of carbon fiber composites is strongly influenced by the selected resin system.
Service temperature range, UV resistance, and moisture durability depend on resin chemistry and surface protection rather than the carbon fibers themselves.
Cañas de flecha de carbono, tacos de billar, cañas de hockey, cañas de lacrosse y componentes deportivos de CFRP
Productos OEM de fibra de carbono y compuestos fabricados para aplicaciones de rigidez, reducción de peso y equipamiento deportivo de alto rendimiento.
Pértigas de limpieza, pértigas de inspección, herramientas de campo y componentes compuestos telescópicos
Productos de fibra de carbono ligeros y duraderos optimizados para la portabilidad, el alcance y la fiabilidad operativa en herramientas para exteriores.
Bastidores de drones, brazos, trenes de aterrizaje y componentes estructurales ligeros
Estructuras de fibra de carbono de alta resistencia diseñadas para optimizar la relación resistencia-peso en aplicaciones de UAV y drones.
Brazos robóticos, plumas, eslabones estructurales y componentes de CFRP personalizados
Piezas de materiales compuestos fabricadas con precisión y diseñadas para ofrecer rigidez, estabilidad dimensional y rendimiento dinámico en sistemas robóticos.
Refuerzos estructurales, piezas de revestimiento interior y componentes de CFRP personalizados
Soluciones de fibra de carbono centradas en la reducción de peso, la integración funcional y la durabilidad para aplicaciones de automoción y movilidad.
Pértigas de limpieza, pértigas de inspección, herramientas de campo y componentes compuestos telescópicos
Productos de fibra de carbono ligeros y duraderos optimizados para la portabilidad, el alcance y la fiabilidad operativa en herramientas para exteriores.
Insertos de protección, cascos, paneles de refuerzo y componentes compuestos resistentes a los impactos
Piezas de fibra de carbono y materiales compuestos diseñadas para la protección, la integridad estructural y las aplicaciones críticas para la seguridad.
The comparison below is based on public engineering handbooks, aerospace material databases, and industry standards, commonly referenced during material selection.
| Material | Densidad (g/cm³) | Reference |
|---|---|---|
| Carbon Fiber Composite (epoxy) | 1.5 – 1.8 | ASM International |
| Aluminio 6061-T6 | 2.70 | The Aluminum Association |
Engineering implication:
Carbon fiber composites are typically 30–45% lighter than aluminum for equivalent structural volume, making them preferable in weight-critical designs.
| Material | Resistencia a la tracción (MPa) | Densidad (g/cm³) | Specific Strength* |
|---|---|---|---|
| Carbon Fiber Composite | 600 – 1500 | 1.5 – 1.8 | 400 – 1000 |
| Aluminio 6061-T6 | ~310 | 2.70 | ~115 |
*Specific Strength = Tensile Strength / Density (relative comparison)
Data sources:
ASM Handbook, Volume 21 – Composites
Aluminum Association – 6061-T6 Datasheet
Engineering implication:
Carbon fiber delivers 3–8× higher specific strength than aluminum, which is why it replaces aluminum in aerospace, UAV, and high-performance structures.
| Material | Tensile Modulus (GPa) | Reference |
|---|---|---|
| Carbon Fiber Composite | 70 – 230 (fiber-direction) | NASA |
| Aluminio 6061-T6 | ~69 | Aluminum Association |
Engineering implication:
Aluminum provides isotropic stiffness (same in all directions).
Carbon fiber stiffness is direction-dependent, allowing engineers to place stiffness only where needed—resulting in lighter structures.
| Performance Aspect | Carbon Fiber | Aluminum | Reference |
|---|---|---|---|
| Comportamiento ante la fatiga | Minimal degradation after 10⁶ cycles | Progressive crack growth | ASTM D3479 / ASM |
| Resistencia a la corrosión | Immune to corrosion | Susceptible without protection | NASA / ASM |
| Vida útil típica | 15–25+ years | Design-dependent | FAA / ASM |
Engineering implication:
Carbon fiber performs exceptionally well in cyclic loading environments, while aluminum requires careful fatigue and corrosion management.
| Parameter | Carbon Fiber Composite | Aluminum | Reference |
|---|---|---|---|
| Coefficient of Thermal Expansion | −0.1 to 1.0 µm/m·K | ~23 µm/m·K | NASA |
| Continuous Service Temperature | Resin-dependent (120–250 °C) | >200 °C | ASM |
Engineering implication:
Carbon fiber offers excellent dimensional stability under temperature change, while aluminum expands significantly with heat.
| Factor | Carbon Fiber | Aluminum |
|---|---|---|
| Material Cost | Higher | Lower |
| Manufacturing | Composite layup, molding, curing | Machining, extrusion, forming |
| Design Flexibility | High (custom layups) | Moderado |
| Best Use Case | Weight-critical, high performance | Cost-sensitive, high volume |
Carbon fiber is typically selected over aluminum when:
La reducción de peso es fundamental
High specific strength or stiffness is required
Fatigue resistance and corrosion immunity are important
Custom structural optimization justifies higher material cost
Aluminum remains advantageous where:
Cost sensitivity dominates
Isotropic properties are preferred
High-volume, simple geometries are required
ASM Handbook, Volume 21 – Composites
NASA Materials and Processes Technical Information System (MAPTIS)
ASTM D3039 / ASTM D3479
The Aluminum Association – Aluminum 6061-T6 Datasheets
FAA Advisory Circular AC 20-107B
Yes, carbon fiber has a significantly higher relación resistencia-peso than steel.
While steel may offer higher absolute strength in bulk form, carbon fiber provides comparable or higher tensile strength at a much lower weight, making it more efficient in weight-sensitive structural applications.
In terms of specific strength and stiffness, carbon fiber outperforms aluminum.
Carbon fiber composites can achieve several times the strength-to-weight ratio of aluminum alloys, which is why they are often selected in aerospace, UAV, and high-performance structural designs.
Carbon fiber does not plastically deform like metals and is considered a brittle material in failure behavior.
When overloaded, it may fail suddenly rather than bending, which is why proper laminate design, safety factors, and impact considerations are critical in engineering applications.
Carbon fiber strain typically refers to strain-to-failure, which indicates how much deformation the material can withstand before fracture.
For standard carbon fiber composites, strain-to-failure values generally range from approximately 1.3% to 2.1%, depending on fiber grade, resin system, and laminate architecture.
Carbon fiber composites offer excellent fatigue resistance and do not corrode like metals.
When properly designed and protected from excessive impact or environmental exposure, carbon fiber components can achieve service lives of 15–25 years or more in structural applications.
Carbon fibers themselves are thermally stable, but the resin system determines heat and moisture resistance.
Continuous service temperature and environmental durability depend on resin selection, surface protection, and operating conditions rather than the carbon fibers alone.
Carbon fiber may not be ideal for cost-sensitive, high-volume designs, applications requiring ductile deformation, or environments involving severe impact without inspection capability.
In such cases, metals or alternative composites may provide a more suitable balance of performance and cost.